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MODELLING AND FORECASTING COUNT DATA WITH A 

MODEL BASED ON MULTIVARIATE POWER-NORMAL 

DISTRIBUTION: A COMPARATIVE STUDY WITH  AN 

APPLICATION 
  

Abstract. Time series count data are frequently encountered in many real-
world  applications. This paper uses a model, called the MPN model, which is 

based on the multivariate power-normal (MPN) distribution, for modelling time 

series of counts. Compared with the integer-valued GARCH (INGARCH) models, it 
is easier to implement the MPN model because it involves a simpler process of 

distribution and model selection. Furthermore it provides readily a prediction 

interval for the future observation. A set of count data is used to illustrate the 

capability of the MPN model. The fitted MPN model is found to be comparable to 
the INGARCH models with Poisson and negative binomial distributions in terms of 

root mean square error and mean absolute deviation. Diebold and Mariano, and 

Mincer-Zarnowitz tests are carried out to confirm the unbiasedness of the 
predicted values for all the models. 

Keywords: Integer-valued, Count data, Multivariate power-normal, 

INGARCH, Over-dispersed. 
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1. Introduction 

Integer-valued time series models play an important role in modelling the 

time series of count data. There are two types of integer-valued time series models: 
thinning models and state space models. The thinning models are based on 

binomial or geometric thinning operator which is commonly used to ensure the 

realisations are positive, see Mckenzie (1985), Al-Osh and Alzaid (1987) and etc. 
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On the other hand, the state space model can be divided into two categories 

according to whether it is observation-driven or parameter-driven. 

In this paper, we begin with the observation-driven state space models. 
Heinen (2003) introduced the autoregressive conditional Poisson (ACP) model 

with Poisson and double Poisson distributions to model count data. He showed that 

the model with double Poisson distribution gives a better fit to the data than the 

model with Poisson distribution. Ferland et al. (2006) proposed integer-valued 
generalised autoregressive conditional heteroscedasticity GARCH  model of order 

p and q (INGARCH(p,q)) with conditional Poisson distribution and showed that 

under some regularly conditions all moments of the INGARCH(1,1) model exist. 
In fact the INGARCH model, also known as the ACP model share the same mean 

structure as autoregressive conditional duration and GARCH models except that in 

the former models, the count data follow a non-negative support discrete 
distribution. Weiβ (2009) derived the variance and autocorrelation functions for the 

general INGARCH(p,q) model. His findings cover the results given by Heinen 

(2003) and Ferland et al. (2006) which is a special case of the INGARCH(1,1) 

model. In the empirical study on claims counts data, Weiβ (2009) showed that 
INGARCH(1,0) model gives better fit than the integer-valued autoregressive 

model of order 1 (INAR(1)) in terms of Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). Studies related to a special case of 
INGARCH(p,q) given by  INGARCH(p,0) or integer-valued autoregressive 

conditional heteroscedasticity model of order p (INARCH(p)) have been carried 

out by Weiβ (2010) and Zhu and Wang (2010, 2011). 
Conditional Poisson distribution has equal mean and variance (equi-

dispersion). However, empirical evidence indicates that many count data are over-

dispersed. To deal with the over-dispersion issue, many alternative models have 

been put forward. The negative binomial regression model which is a 
generalisation of Poisson log-linear regression models was proposed by Davis and 

Wu (2009) for count time series. Zhu et al. (2010) proposed a mixture integer-

valued ARCH model which is able to handle over-dispersion, multimodality and 
nonstationary components. Zhu (2011) proposed a negative binomial INGARCH 

model that can deal with both over-dispersion and potential extreme observations 

simultaneously. Empirical results by Zhu et al. (2010) show that negative binomial 

INARCH(1) model outperformance than the double Poisson and Poisson 
INARCH(1) model in modelling the over-dispersed data. Further extensions of 

INGARCH models included zero-inflated Poisson and negative binomial 

INGARCH models of Zhu (2012), long memory ACP model of Groβ-Klubmann 
and Hautsch (2013), and INGARCH model with exogenous covariates of Agosto et 

al. (2016). 

For the thinning models, as pointed out by Weiβ (2009) and Weiβ (2010), 
the models based on an appropriate type of thinning operation and with negative 

binomial or generalised Poisson marginal distribution have disadvantages 
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compared to INGARCH models. For example, the joint distribution of the thinning 

operators leads to a quite complex model structure.   For the parameter-driven 

model, although the model is more flexible than the observation-driven model in 
term of modelling the over-dispersed count, the parameter-driven model is less 

popular because it is computationally burdensome. 

The aim of this paper is to investigate the use of a time series model based 

on the multivariate power-normal (MPN) distribution for modelling the integer-
valued count data. This model will hereafter be referred to as the MPN model. The 

MPN distribution is able to capture the four major characteristics, namely mean, 

variance, skewness and kurtosis, exhibited by the data. Thus, it is able to fit a lot of 
real continuous datasets. As for the discrete datasets, the MPN distribution can 

provide a good approximation to the underlying multivariate discrete distribution 

provided that we can find the parameters of the MPN distribution of which the four 

major characteristics match with those exhibited by the data. The cases in which 
the matching of the four major characteristics is not satisfactory may arise. This 

may happen if the number of values in the support of an underlying univariate 

discrete distribution is very small (for example, two or three). Thus an obvious 
advantage of the model based on MPN distribution is that when the numbers of 

values in the supports of the underlying variables of the given discrete dataset are 

not too small, the MPN distribution is not bothered much by the issue of over-
dispersion of the count data. 

The existing methods for modelling the integer-valued count data usually 

require careful selection of the basic distribution from the list of discrete 

distributions. However, the model based on MPN distribution does not need to 
bother further about the choice of distribution. Another advantage of the model 

based on MPN distribution is that a prediction interval for the future observation 

can be obtained easily without going through other procedures such as the 
bootstrapping method as has been used in Ferland et al. (2006). 

The MPN model together with the INARCH and INGARCH models with 

Poisson and negative binomial distributions are fitted to one set of count data. The 
predictive performance of these models are measured and compared using root 

mean square error (RMSE) and mean absolute deviation (MAD).The prediction 

intervals based on the MPN distribution are computed along with their coverage 

probability and average length. Further, two tests, namely Mincer-Zarnowitz 
regression approach test (Mincer and Zarnowitz, 1969)  and Diebold-Mariano test 

(Diebold and Mariano, 1995) are carried out to assess the comparative forecast 

accuracy between models. 
The remainder of this paper is organised as follows: Section 2 reviews the 

general INGARCH models with Poisson and negative binomial distributions. 

Section 3 discusses the setup of the MPN model. Section 4 discusses an application 
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of the MPN model and carries out the model comparison. Concluding remarks are 

given in Section 5. 

 

2. A review of INGARCH model 

In this section, we consider different types of INARCH and INGARCH 

models with Poisson and negative binomial distributions. 

Let  
t

X be the integer-valued process. 

(i) The INGARCH(p,q)  with Poisson distribution is given as  

)(~|
1 ttt

PFX 
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where 1t
F  is the information available on the series  

t
X up to time 1t and 0 ,

0
i

 , 0
j

 are parameters to be estimated. When 0q , the INGARCH(p,q) 

reduces to the integer-valued autoregressive model of order p (INARCH(p)). 

The probability mass function of t
X  has the form 
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1 . Note that the conditional distribution of t
X  is equi-dispersed. 

However, it is easy to show that the unconditional distribution of t
X  is over-

dispersed 
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(ii) The INGARCH(p,q)with negative binomial distribution (also known as 
NBINGARCH) is given as 

),(~|
1 ttt

prNBFX
 , 

 
 




 p

i

q

j

jtjitit

t

t X
p

p

1 1

)1(
 ,    (2) 

where r  is a positive number and t
p is the probability of a successful trial. 

The probability mass function of t
X  has the form 
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
. The corresponding conditional mean and 

variance are respectively ttt
rFX 


)|(E

1 and )1()|(Var
1 tttt

rFX  
 . It can be 

shown that the model given by Equation (2) is over-dispersed for both conditional 

and unconditional t
X , that is )|(E)|(Var

11 


tttt
FXFX and )(E)(Var

tt
XX  (see 

Zhu, 2011). 

The parameters of these models with various distribution assumptions are 

estimated by maximum likelihood (ML)method. Let )(θl  be the conditional log-

likelihood function with parameter vector θ : 


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Then the ML estimator, θ̂ , of θ  is given by 
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θ
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 ,    

where  is the parameter space for θ . Note that the conditional log-likelihood 

functions in the models in (i) and(ii) are given by  

1. INARCH or INGARCH model:  
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3. Time series model based on multivariate power-normal 

distribution 

Let us begin with the non-normal distribution given in Yeo and Johnson 
(2000). These authors have introduced the following power transformation 
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If z in Equation (4) has the standard normal distribution, then ~  has a non-normal 

distribution which is derived by a type of power transformation of a random 

variable with normal distribution. We may say that ~  has a power-normal 

distribution. 
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Let y  be a vector consisting of k correlated random variables. The vector 

y  is said to have a k-dimensional power-normal distribution with parameters 

iii
 ,,,, 

Hμ , ki 1  if  

,Hεμy              (5) 

where )(E yμ  , H is a )( kk  orthogonal matrix, the components k
 ,,,

21
  of 
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0
i

 is a constant, and i
~  has a power-normal distribution with parameters 

i
  

and 

i
 . 

In Pooi (2012), i
  is estimated by using the average of the observed 

values of i
y , H  is estimated by using the eigenvectors of the variance-covariance 

matrix estimated from the observed values of y , while 

i
 , 

i
  and i

  are 

estimated by using the estimated second, third and fourth moments of the 

components of )(T
μyH  . The details of the procedure for the above parameter 

estimation can be found in Section 4 of Pooi (2012). 

When the values of 121
,,,

k
yyy   are given, an approximation for the 

conditional probability density function (pdf) of k
y may be found by the following 

numerical procedure given in Pooi (2012): 

(1) Select a large number p
N of equally spaced feasible values of k

y . 
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(3) Replace y by 
)( pi

y , and μ together with H  in Equation (5) by their respective 

estimates and solve for ε . Let the solution be denoted as 
( )ipε . 

(4) Use Equation (6), and Equation (4) with  , z and ( , )   replaced 

respectively by i
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the relevant Jacobian of transformation, over ki 1 . 

(6) Estimate the conditional pdf (evaluated at 
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y )  of  k

y by 
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i ip p
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Suppose we have a set of data which span over T evenly spaced time 

points. From the data, we can form a table of )1(  kT  rows with each row 

representing the observed values of k
yyy ,,,

21
 at k consecutive time points. 
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From the table, we can form the w
i -th moving window of size n  from the w

i -th 

row till the )1(  ni
w -th row. We can form a total of nkTN  )1(  such 

windows of size n . We next fit a k -dimensional power-normal distribution for

),,,(
21 k

yyy   using the data in the w
i -th window.  

We may find a conditional distribution for k
y  when the values of 

121
,,,

k
yyy   are given by the first 1k  values in the row which is immediately 

after the w
i -th window. Although the resulting conditional distribution for k

y  is 

continuous, it can be converted to a discrete distribution by equating )(P iy
k
  to 

the probability that the continuous version of k
y  lies in ]5.0,(  ii  where 

5.0 ii  if 1i  and i  if .0i This conditional distribution then 

specifies a time series model based on the MPN distribution for the future value 

k
y  when the present value 1k

y  and 2k  previous values 221
,,,

k
yyy   are 

given. We may refer to this model as the MPN model of order 1k . The mean 
)(ˆ wi

k
y  of the conditional distribution is then a predicted value of k

y . The root mean 

square error (RMSE) and mean absolute deviation (MAD) of k
y are then given 

respectively by  
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where
)( wi

k
y  is the observed value of .

k
y  

The )%2/(100  and )%2/1(100  points of the conditional distribution 

may be regarded as the lower and upper limits of the nominally )%1(100  out-of-

sample prediction interval for k
y . As the prediction interval contains a set of 

possible values of the observed k
y , it is more informative than the mean 

)(ˆ wi

k
y

which is only one possible value of observed k
y . 

The coverage probability of the prediction interval may be estimated by 

the proportion of prediction intervals (out of the N  prediction intervals) which 

include the observed value of k
y . Meanwhile, the expected length of the 

prediction interval may be estimated by the average length of the prediction 

intervals. When the estimated coverage probability is close to the target value 
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1 , a small value of the average length is indicative of good predictive power of 

the model. 
 

4. Application 

Freeland (1998) and Weiβ (2009) analysed the data which consist of the 
monthly claims counts of workers collecting Short Term Wage Loss Benefits from 

the Richmond claims center between January 1987 and December 1994.Summary 

statistics of the monthly claims counts of workers are reported in Table 1. The 

dispersion index given by the ratio of variance to mean is 1.320, indicating that the 
data are over-dispersed. Figures 1 to 3show respectively the time series, sample 

autocorrelation function (ACF) and sample partial ACF (PACF) plots. The ACF 

plot shows decay of correlation while the PACF plot shows that the partial 
autocorrelation at the lag value of 1 is significant at the 0.05 level. Thus the 

autoregressive model of order 1 may fit the data well. 

 
Figure 1. Time series plot for the monthly claims counts of workers 

 

           Table 1. Summary statistics of monthly claims counts of workers 

Summary statistics 

Sample Size 96 

Mean 8.604 

Standard Deviation  3.370 

Skewness 0.074 

Excess Kurtosis -0.252 

Dispersion Index 1.320 
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Figure 2. ACF plot of the series 

 
 

 
Figure 3. PACF plot of the series 

 

We first fit the data given by the 1st(i.e. when 1
w

i ) window of size 

50n   with the MPN model of order one (i.e., when 2k ). The 51 data points 

used to form the first window are also used to fit the INARCH and INGARCH 

models with Poisson and negative binomial distributions. The INARCH and 

INGARCH models of different orders are considered. These models include the 
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INARCH(1), INARCH(2) and INGARCH(1,1). The parameter estimates of the 

MPN model, INARCH and INGARCH models are respectively shown in Tables 2 

and 3. A total of 45N  one-step ahead out-of-sample rolling window monthly 

claims counts forecasts from April 1991 to December 1994 are obtained for all the 

models. The forecasting performances of these models are compared using two 
out-of-sample criteria, namely RMSE and MAD. The prediction intervals based on 

the MPN model for predicting the 45 monthly claims counts are shown in Figure 4 

along with the corresponding predicted and observed values. The estimated 

coverage probability and average length of the prediction intervals are reported in 
Table 2. We note that the average length of the prediction interval is 11.182 and 

the estimated coverage probability of the prediction interval is 0.956 which is close 

to the target value 0.95. 

 

Table 2. Parameter estimates, coverage probability and average length of the  

MPN model of order one ( 96, 50, 2, 1)wT n k i     
 

MPN model of order one 

340.9
1
  340.9

2
  

654.2
1
  996.3

2
  

150.1
1
  350.0

2
  

720.0
1
  010.0

2
  








 


812.0584.0

584.0812.0
H  

Estimated Coverage Probability = 0.956 

Average Length = 11.182 
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Figure 4. Observed and predicted values together with the 95% prediction 

interval found by using the MPN model of order one 

 

Table 3. Parameter estimates, out-of-sample forecast criteria for INARCH,  

INGARCH and MPN models. Values in italic are standard errors of  

the parameter estimates )1( 
w

i  

 

Parameter 

Model 

INARCH

(1) 

INARCH 

(2) 

NBINARCH 

(1) with r = 1 

 

NBINARCH 

(1) with r = 2 

NBINARCH 

(2) with r =1 

  5.0440 

1.2485 

2.9642 

1.3475 

4.6465 

3.7685 

2.3380 

1.4099 

2.7585 

3.8706 

1
  0.4600 

0.1330 

0.2879 

0.1462 

0.5053 

0.4292 

0.2510 

0.1596 

0.2999 

0.4710 

2
   0.3904 

0.1460 

  0.4021 

0.4916 

RMSE 2.986 3.130 2.983 4.716 3.139 

MAD 2.428 2.514 2.427 4.096 2.512 

 
Table 3- continued 
 

Parameter 

Model 

NBINARCH 

(2) with r = 

2 

INGARCH 

(1,1) 

NBINGARCH 

(1,1) with r =1  

NBINGARCH 

(1,1) with r =2 

MPN 

model of 

order one 

  1.3878 

1.4522 

1.0107 

0.8454 

0.8874 

2.3930 

0.6732 

1.0810 

- 

Index

D
a

ta

44403632282420161284

18

16

14

12

10

8

6

4

2

0

V ariable

F itted

Upper Limit

Lower Limit

O bserv ed
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1
  0.1500 

0.1750 

0.3246 

0.1069 

0.3396 

0.3287 

0.2039 

0.1144 

- 

2
 / 1

  0.2000 

0.1811 

0.5682 

0.1397 

0.5673 

0.4148 

0.4470 

0.2713 

- 

RMSE 4.797 3.091 3.091 4.771 3.056 

MAD 4.173 2.498 2.493 4.140 2.459 

 

 

From Table 3, we observe that the NBINARCH(1) with 1r gives the 
smallest RMSE among the fitted models. The models with slightly larger RMSE 

are the INARCH(1), MPN, INGARCH(1,1), NBINARCH(2) with 1r  and 

NBINGARCH(1,1) with 1r .  By comparison, the remaining models in Table 

3do not perform well. As expected, the NBINARCH(1) model with 1r performs 
better than the INARCH(1) model which is based on the Poisson distribution 

because the dispersion index exhibited by the data is more than 1.Table 3 shows 

that similar forecasting performances of the models can be observed if we use the 
MAD criteria.  

In using the MPN model, we do not have to take note of the dispersion 

index because the selection of the distribution is automatically taken care by the 

choice of the parameters  and  . In using the discrete models, we need to 

decide whether it is necessary to include lag values of the mean t
 in the model. 

Thus the process of model selection is very much simplified if we use the MPN 

model. Another advantage of the MPN model is that it provides directly the 
prediction intervals without having to generate them using another method such as 

the bootstrap procedure. As the RMSE of the MPN model is only marginally larger 

than those of the NBINARCH(1) with  1r  and INARCH(1) models, and the 
prediction interval is available without further computation, it is worthwhile to 

consider using the MPN model to analyse the discrete time series.   

To compare further the forecasting performances of these models, we carry 
out the Mincer-Zarnowitz (MZ) test based on regression approach and the Diebold-

Mariano (DM) test which is a pair-wise test of equal forecast accuracy. Suppose 

that we have a time series t
X ; mnt  ,,2,1   of count data, where a model is 

fitted using the first nobservations.  Let
)1(ˆ

t
X and 

)2(ˆ
t

X  be the fitted values found by 

using the MPN model and the INGARCH models respectively.  

(i) Mincer-Zarnowitz regression approach considers the following model 

t

j

tt
uXbaX  )(ˆ ,  2,1j , 

where the coefficients a  and b  are parameters to be estimated and t
u  represents 

the error term. An F-test on the joint hypothesis 0a  and 1b  is carried out. The 

insignificant result indicates that the forecasts are unbiased. 
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(ii) To apply the DM test, we first compute the forecast errors from the two 

models: 
)1()1( ˆ
hnhnhn

XX


 , mh ,,2,1  , 

and 

 
)2()2( ˆ
hnhnhn

XX


 , mh ,,2,1  . 

The accuracy of each forecast is measured by a suitable loss function, )( )(i

hn
L


 , 

2,1i . Two popular loss functions are the absolute deviation loss and square error 

loss given by 

 Absolute deviation loss: ||)( )()( i

hn

i

hn
L


  , 

 Square error loss: 2)()( )()( i

hn

i

hn
L


  . 

The following DM test statistic evaluates the forecasts in terms of an 

arbitrary loss function )(L : 

,
/

/)]()([

DM
2

1

)2()1(

mS

mLL
m

h

hnhn









 

where 2S is an estimator of the variance of )()( )2()1(

hnhnh
LLd


  . Under the null 

hypothesis of equal forecast accuracy, the distribution of the DM statistic is 

approximately standard normal (see Diebold and Mariano, 1995). 

 Table 4 shows the results of MZ test. We observe that the p-values of joint 

F-test for the models NBINARCH(1) with 2r  and NBINGARCH(1,1) with 
2r exceed the significance level of 0.05 showing sufficient evidence to reject the 

null hypothesis. These findings are also reflected at RMSE and MAD of these two 

models.  Table 5 shows the DM test statistics and their corresponding p-values. 
The results also show that the MPN model and NBINARCH(1) with 2r  and 

NBINGARCH(1,1) with 2r are significance different in the forecasting ability at 

0.05 significant level.  

 

Table 4. Coefficients, standard errors in italic, p-values for the MZ test based  

on out-of-sample forecasts using the MPN model and various  

INARCH and INGARCH models 

 
 MPN INARCH(1) NBINARCH(1) 

with r =1 

NBINARCH(1) 

with r =2 

a 

 

pa 

2.2161 

2.3476 

0.3504 

1.4856 

2.5078 

0.5567 

1.9650 

2.2428 

0.3858 

1.9121 

2.2689 

0.4040 

b 0.6657 

0.2725 

0.7626 

0.2960 

0.7088 

0.2650 

1.4297 

0.5362 
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pb 

0.2266 0.4270 0.2779 0.4273 

F 

pF 

1.6783 

0.1987 

0.9363 

0.3999 

1.1196 

0.3357 

34.997 

0.0000 

 

Table 4 - continued 
 INGARCH(1,1) NBINGARCH(1,1) 

with r =1  

NBINGARCH(1,1) 

with r =2 

a 

 

pa 

2.9193 

2.5115 

0.2515 

3.0659 

2.2970 

0.1890 

2.7433 

2.2956 

0.2386 

b 

 

pb 

0.5983 

0.3000 

0.1876 

0.5812 

0.2738 

0.1334 

1.2399 

0.5470 

0.6631 

F 

pF 

1.2547 

0.2954 

1.5115 

0.2321 

34.045 

0.0000 

*F is refer to the value of F-test. pa, pb and pF are p-values for t-tests and F-test 
respectively. 

5. Conclusion 

This paper uses the MPN model to analyse a set of discrete time series 
data. The performance of the MPN model is found to be comparable to the best 

INGARCH model.  

The other advantages of the MPN model include the ease in selecting 
distributions, a simpler process of model selection and the readily available 

prediction intervals.  

It is also noted that the MPN model permits the investigation of the effects 

of the explanatory variables on the future observation if we form a new value of y

of which the initial components are the values of the explanatory variables 

followed by the desired number of y  at consecutive time points. 

       Table 5. The results of the Diebold-Mariano test for 45m  one-step  

        ahead forecast, with p-values in parentheses. The benchmark is  

        the MPN model 

 
Loss function 

based on 

INARCH(1) NBINARCH(1) 

with r =1 

NBINARCH(1)

with r =2 

Absolute 

Deviation 

0.60838 

(0.5461) 

0.63581 

(0.5282) 

-3.4878 

(0.0011) 

Square Error 1.1397 

(0.2606) 

1.3136 

(0.1958) 

-3.2389 

(0.0023) 
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Table 5 - continued 
Loss function 

based on 

INGARCH(1,1) NBINGARCH(1,1) 

with r =1  

NBINGARCH(1,1) 

with r =2 

Absolute 

Deviation 

-0.56274 

(0.5765) 

-0.48761 

(0.6282) 

-3.5543 

(0.0009) 

Square Error -0.46994 

(0.6407) 

-0.52661 

(0.6011) 

-3.3016 

(0.0019) 
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